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Abstract. We try to explain some common features of the spin-glass phase diagrams found 
so far using Nishimori’s method for *.I and Gaussian distributions in Ising models on 
hypercubic lattices. 

In recent years there has been much interest in the theory of spin glasses (for a recent 
review see, for example, Binder and Young (1986)). These models contain random 
ferromagnetic and antiferromagnetic bonds and the competition between them causes 
a new type of ordering (Edwards and Anderson 1975). The Ising spin glass is one of 
the simplest of these models which shares the characteristic spin-glass features. 

The model contains ferro- and antiferromagnetic bonds with a given distribution, 
but it is usually assumed that the main features do  not depend strongly on the concrete 
distribution function. So we will restrict ourselves to the Gaussian and the * J  distribu- 
tions in most of this paper. (The spins are thought to be situated on a hypercubic lattice.) 

The infinite range spin glass (Sherrington and Kirkpatrick 1975) has been discussed 
in detail in the literature (see the review of Binder and Young (1986)). We have 
considerably less information about low-dimensional models and most of that comes 
from approximate methods. A recent high-temperature series expansion work (Singh 
and Chakravarty 1986) gives no phase transition in two dimensions but gives a finite 
critical temperature in higher dimensions for the symmetric * J  distribution. These 
findings are in agreement with numerical work (Bhatt and Young 1985, McMillan 
1985, Bray and Moore 1984, 1985, Ogielski and Morgenstern 1985). 

In this paper we consider phase diagrams of Ising spin glasses. Let us first summarise 
what is known about these phase diagrams. 

The phase diagram of the SK model can be seen in figure 1. The discussion of the 
diagram can be found in a paper by Toulouse (1980). Besides, we know from 
Nishimori’s work that the boundary of that phase in which the magnetisation is not 
zero is re-entrant-like (Nishimori 1981). 

Moreover, we can get phase diagrams from real space renormalisation group 
treatments (Jayaprakash et a1 1977). Although their results are not very reliable, since 
they obtain a finite critical temperature in two dimensions, it is worth mentioning that 
the sc-ferro phase boundary is a straight line and the sc-para boundary is also straight 
around p = 4 (*J  model) in three and four dimensions. Later we will argue that these 
two features are generally characteristic of the * J  model. 

In this paper we will use Nishimori’s result (Nishimori 1981) and here we sum up 
his findings. For a given family of distributions (which includes both the * J  and the 
Gaussian ones) we can obtain, for a gauge-invariant (Toulouse 1977) quantity A, - 

(A)pOP = (A)p ,Z(P) /  C ( P )  ”* (1) 
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Figure 1. Phase diagram of the SK model for Gaussian distribution (A) and the suggested 
diagram in d dimensions for a Gaussian distribution (B).  The broken curve is the Nishimori 
line. 
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Figure 2. The suggested diagram for il distributions. 
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where ( ) denotes the thermal average, the configurational average with a concentra- 
tion p of ferromagnetic bonds, po is the inverse temperature of the system and C ( p )  
is a constant which is for the * J  model C ( p )  = 2TN (cosh j 3 J ) - N h ,  Z ( p )  is the partition 
function at the inverse temperature p and p = p (  p )  is a function of the concentration 
(for *J,  J p  =$In(  p /  1 - p ) ) .  We can define a line on the p -  T plane which is called 
the Nishimori line and is characterised by the expression Po = p (  p). For the magnetisa- 
tion we can obtain 

- 
( S , ) P , P  = ( ~ J & ( U , ) P  (2) 

where (U,)@ is the magnetisation at the inverse temperature p. 
In the following we would like to show that the transition temperature between 

the disordered (high temperature) and ordered (low temperature) phase is a monotonic 
function of p on the interval (0.5, 1 ) .  

To see this we shall use the replica trick. First let us consider the Gaussian case: 

where n is the number of replicas, Jo is the mean, J is the width of the distribution 
and a,  p are replica indices. After averaging, we have an Ising model with two- and 
four-spin couplings, but all the bonds are non-negative. We therefore use a corollary 
of the Griffiths inequality (Griffiths 1972) that the critical temperature does not decrease 
if we strengthen the bonds. Since Jo is an increasing function of p, we conclude that 
the transition temperature does not decrease with increasing p. This holds for all n 
so we assume that it will be valid when we make a cont inuaon in n. 

For the * J  and other models we cannot exponentiate Z“ so easily but it can be 
seen immediately that the effective model (after averaging) is not frustrated and the 
ground-state energy decreases with increasing p .  So the above conclusion is true for 
all distributions on hypercubic lattices, i.e. the transition temperature is an increasing 
function of p on the given interval. 

Now we would like to see how the phase boundary begins to rise in the * J  model. 
Let us investigate the Edwards-Anderson parameter 

- 
= [ Z ( P ) /  C(p) I (~ i )2p~~’~*  (4) 

As long as p is low enough we can expand Z / C  in powers of tanh(pJ). C ( p )  is 
analytic at all temperatures and Z ( p )  is also analytic for all p < pc, where pc = 1/ kT, 
and T, is the critical temperature of the pure ferromagnetic system. (It is possible that 
Z ( p )  is analytic for p < p * ( > p c )  for almost all bond configurations, but the existence 
of p* is not clear.) 

and 

Since the series is convergent we can write 
m f al(s,)i,1/2(tanh P J ) ’  = bl(tanh p J ) ’ .  

I = O  I = O  
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Here the b, depend only on the p = f behaviour. Besides, we know that 2 p  - 1 = tanh PJ, 
so we have 

Let Po be such that - 
(S . ) *  ’ Po “2  = 0 

then there exists an E > 0 for which 

( S I ) z p O P  = 0 

if p E (0.5,0.5 + E ) .  This means that in equation (8) the power series will give 0 on the 
interval (0.5,0.5+ E ) .  To get another value, a singularity must occur in p but the bl 
do not depend on p u h e r e  is no singularity. 

This means that = O  will hold as long as Z / C  can be expanded in a power 
series, i.e. up  to the first singularity. As a result the phase boundary must be a straight 
line around f (figure 2). 

It is generally believed that in random systems weak singularities can occur (Griffiths 
1969) which affect the dynamics of the system. From the above statements we can 
conclude that these singularities can also be seen in the thermodynamics. 

Let us now turn to the characterisation of the ferromagnetic phase. To do  so we 
will make a conjecture for which we give some arguments. We know from Nishimori’s 
work that - 

(si)pOp = ( S i ) p , ( c i ) p  (9) 

Let B denote the non-gauge-invariant part of the distribution function. Then we can 
write 

- -  
(Si)@,P = (Si)@$? ‘ I 2  

and - -  
(U,)@ = (a1)@ ”* 

- 
(for the * J  model B = (cosh pJ)-NbII(l,) exp(pJ,)). Since ( s l )p”’  = 0 for all fi  we can 
conclude that B and ( s ~ ) ~ , ,  (and also B and (a,)@) are correlated, so we can assume 
that ( s ~ ) ~ ~  and (U,)@ are also correlated so that the two are of the same sign at each 
site for almost all the configurations, i.e. - 

( S 1 ) p o P  = I(&,(~J@l p. (10) 
Since ( s , ) ~ ,  and (U,)@ are positively correlated we have -- 

I ( % ) p n ( ~ J @ l P  3 I(SJP,l I(Ul>@l p.  

( S , ) p o P  2= l (~ , )p, IPl (UJplP 

I(UJ@l p .  

Therefore we conjecture 
- -- 

and we know from Nishimori’s paper that 
- -  

Let us see how these inequalities affect the boundary of that phase in which the 
magnetisation is non-zero. If a spin-glass phase exists then the boundary is a straight 
vertical line, as can easily be seen from (12) and (13 ) .  
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These findings are in agreement with previous results for the SK model (Toulouse 
1980) and real space RG treatments (Jayaprakash er al 1977). If the spin-glass phase 
does not exist then our conjecture ( 1 2 )  does not give new information about the 
boundary. 

We have investigated the phase diagram of spin glasses. We have shown that for 
the * J  model, the paramagnetic spin-glass boundary is a straight horizontal line, at 
least on the interval ( O S , p * ) ,  where 2 p * - 1  =tanh(J/kT,) where T, is the critical 
temperature of the pure model. This means that Griffiths singularities also affect the 
thermodynamics of the system. Besides this we have made a conjecture and its 
consequence means that the boundary of the ferromagnetic phase is a straight vertical 
line if the spin-glass phase exists. 
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